Perichondrium Graft: Harvesting and Indications in Nasal Surgery

Armando Boccieri, MD, and Tito M. Marianetti, MD

Abstract: Irregularities in the nasal contour of patients who underwent multiple surgeries are frequently related also by skilled surgeons. The aim of this study was to describe the method of harvesting and the primary applications of erichondrium grafts in revision rhinoplasty to prevent postoperative irregularities.

Conchal grafts were used in the reconstruction of structures missing as a result of rhinoplasty. The perichondrium was removed from the cartilage during harvesting and fixed on the cartilaginous grafts to fill up empty spaces and make uniform the surface of the grafts. These techniques were used on 62 patients.

All of the patients treated showed aesthetic improvement with respect to the preoperative situation. Comparison with other cases in which the perichondrium graft was not used demonstrates its effectiveness in avoiding certain sequelae over time, especially as regards the presence of unattractive sharp edges often visible beneath the cutaneous covering after the use of structural grafts.

In conclusion, perichondrium grafting during secondary rhinoplasty is an easily performed technique that involves a small increase in operating time if combined with the harvesting of conchal material. Its application over the surface of cartilage grafts constitutes a stable covering over time that protects the definitive result from irregularities caused by the disappearance of postoperative edema and scar retraction.

Key Words: Revision rhinoplasty, perichondrium graft, reconstructive rhinoplasty, autologous graft

PATIENTS AND METHODS

The study regards the use of perichondrium grafts on 62 patients (45 women and 17 men) submitted to revision rhinoplasty between February 2002 and April 2006. Thirty of the patients had previously undergone more than 1 (2–4) rhinoplasty. Although the primary indication for surgical treatment was iatrogenic aesthetic deformity, functional disorders were also present in approximately 30% of the cases. The latter were examined by means of basal rhinomanometry followed by decongestion in accordance with the method described by Constantin and Clardy.

Preoperative aesthetic assessment of the patients was based on photographs showing 6 views: frontal, basal, left and right lateral, and three-quarter. The specific nasal deformities present were catalogued as regarding the upper third (bony pyramid), middle third (cartilaginous pyramid), and lower third (tip, ala, and columella), with at least 2 anatomic nasal sections simultaneously involved in 46 cases. They comprised a saddle deformity, osteotomy irregularities, scar adhesions, asymmetries, a narrow nasal vault, a pollybeak deformity, and the continuing presence of deviation in the upper and middle third and overprojection or underprojection of the nasal tip, deviation, asymmetry, alar collapse, columellar retraction, and bosses to varying degrees in the lower third. Perforation of the nasal septum was present in 3 cases. More than 1 structural graft was indicated in all the cases. Because the nasal septum was insufficient for this purpose, material was taken from one or both sides of the concha. Onlay grafts were used in the upper third to correct various degrees of saddleback deformity. Spreader grafts were used in the middle third to correct deficits of the internal nasal valve and continuing deviation of the dorsum. Alar batten grafts were used in the lower third to reconstruct the alar cartilages and the external nasal valve. Underprojection of the nasal tip required the use of shield grafts or onlay grafts, often combined with columellar struts. An open approach to the nasal pyramid with an inverted-V columellar incision was adopted in all cases.
TECHNIQUE

The harvesting of conchal cartilage is carried out by means of a retroauricular approach so as to leave no visible scar. Infiltration of xylocaine with adrenaline (1:100,000) is carried out on both sides of the concha followed by a vertical median-posterior incision. The tissues above the concha are detached so as to avoid exposing the cartilage completely and leave the perichondrium attached to its posterior surface. Particular care must be taken in this phase to avoid lesions of the perichondrial covering. To this end, it proves advisable to subject the cutaneous strip to firm posterior traction and use the scalpel for detachment purposes.

The outline of the graft is then traced by inserting 4 or 5 straight needles into the anterior surface, taking care to leave the fold of the antihelix and the root of the helix intact. This makes it possible to cut the cartilage of the concha with no risk of impairing the morphology of the auricular pavilion. At this point, the anterior surface of the graft is subjected to subperichondrial detachment, freed completely, and removed. The cutaneous incision is sutured with 5.0 nylon. If this is carried out by another surgeon, preparation of the perichondrium graft can proceed at the same time.

Detachment of the perichondrium from the cartilage of the auricular concha constitutes an essential stage in this technique. The concha must be held firmly in a horizontal position with its posterior surface on top. This can be done either by securing it to a support with needles or by having an assistant hold it firmly in 2 cartilage forceps. As the perichondrium is very strongly attached to the cartilaginous surface, its detachment must be carefully executed with sharply pointed scissors, proceeding edgewise from one end to the other (Fig. 1). The use of an elevator has proved risky because the tissue is easily torn. Before completing the detachment, it is advisable to suture the outer side of the perichondrium with 1 stitch of 6.0 nylon so that it can be correctly positioned during the graft procedure. Detachment of the perichondrium should then be placed on gauze and kept moist through frequent irrigation with a saline solution.

The use of this graft is essentially indicated for the nasal dorsum and tip. It proves useful in the case of a saddle nose deformity in eliminating the gaps that inevitably form between the cartilaginous onlay graft and the surrounding structures. Insertion of the graft can be facilitated by further moistening and its positioning by a combination of external palpation and internal adjustment by means of forceps. It is not necessary to secure the graft in these cases because the rough surface of the perichondrium adheres to the anatomic structures beneath it as soon as the watery component is dispersed. To this end, it can be useful to apply light pressure from the outside, combined in any case with careful taping of the nasal ridge at the end of the operation. The graft can also be used in a very similar way to deal with scar adhesions between the skin and the supporting structures beneath. In such situations, the 2 layers are separated and the graft is inserted between them to provide thickness, permit sliding, and prevent relapse.

Perichondrial tissue can be used in connection with the nasal tip to attenuate the unevenness between the shield or Peck grafts and the surrounding cartilages or other grafts and thus make the edges smoother (Figs. 3A–C). The depression between the tip and the supratip, commonly known as the supratip break, can also prove excessive during the operation and be attenuated through suitable positioning of the perichondrium graft in that area. In other cases, reconstruction of the tip involves suturing portions of the medial to lateral crura or conchal grafts and inevitably leads to the formation of ridges between the cartilages. Here too, the perichondrium graft can serve to restore apparent external continuity to all the structures (Fig. 4). In all of these cases, the graft must first be secured to the surrounding structures with fine sutures of 6.0 nylon and then cut and reshaped according to requirements with finely pointed scissors.

In the case of perforation of the nasal septum, after using a suitable technique to detach the mucosa and suture the perforation, a perichondrium graft can be placed between the 2 flaps so as to provide a further barrier against relapse. If the mucosa is insufficient for complete closure of the perforation, a small portion of the graft can be left uncovered on 1 of the 2 sides. Great importance attaches in any case to securing it in the right position with a number of long-term absorbable mattress sutures.

RESULTS

All of the patients underwent revision rhinoplasty using a perichondrium graft. Improvement of the preoperative nasal deformity was obtained in all the cases. Follow-up ranged from 30 to 60 months (median, 42 mo). There were no instances of infection, movement, or substantial absorption of the grafts. Satisfactory results were achieved in all the cases as regards reconstruction and aesthetic appearance together with an improvement in nasal functionality wherever an obstructive syndrome was present. Positive aesthetic judgements were expressed not only by the operating team but also by the surgeons involved in the control tests, the family physicians, and the patients themselves. Only 1 patient, affected by saddle nose deformity, required further revision surgery, not because of the perichondrium graft but to raise the height of the profile. The correction was achieved by supplementing the grafts present with another onlay graft of cartilage from the contralateral concha.
In the cases involving an obstructive syndrome, the comparison of preoperative and postoperative rhinomanometric data showed a decrease in nasal resistance and an improvement in nasal functionality. As regards the 3 operations for perforation of the septum, a complete closure was obtained in 2 cases (diameter, 2 and 3 cm) and an almost complete closure was obtained in the other (diameter, 3 cm).

Attention should be drawn to the presence in 3 cases of substantial swelling of the tip for more than 3 months. These patients also returned to the mean range of values after 3 injections of triamcinolone administered at intervals of approximately 3 weeks.

The postoperative photographs of 2 patients subjected to multiple cartilaginous grafts of the tip with a covering perichondrial graft show a soft nasal contour with no underlying irregularities (Figs. 5 and 6).

DISCUSSION

Even experienced surgeons have complained of the appearance of irregularities in the nasal dorsum and the tip after revision rhinoplasty. The use of multiple grafts with sharp edges and the presence of thin skin and scar tissue are risk factors for this problem. It has therefore been suggested that various materials should be used in high-risk cases so as to prevent this unwelcome sequela. Those most frequently used and reported in the literature are crushed cartilage, temporal fascia, acellular dermis, and perichondrium.
Which ever material is used, it must be positioned between the skin and the osteocartilaginous nasal supporting structures so as to cover and disguise any underlying sharp edges and asymmetries with its thickness. It can also perform associated functions of filling up small structural gaps and retouching for the purposes of reconstruction. Although easy to shape, crushed cartilage possesses limited flexibility, tends to fragment, and can only be obtained from the septum, which is often insufficient or absent in cases of repeated surgical intervention. The temporal fascia proves very suitable for wrapping the structures below, but its use entails further harvesting and leaves another surgical scar, albeit one that is not visible. An acellular dermis is soft and natural despite being an allogeneic material but is also expensive and absorbable to a not-always-predictable degree. The perichondrium can easily be harvested from the concha with no need of additional surgical approaches, and the use of auricular cartilage is, in any case, very frequent in secondary rhinoplasties. Its thinness and malleability make it particularly suitable for covering every part of the cartilaginous grafts, and it is easy to fold into various layers if greater thickness is required in filling certain areas.

Numerous experimental studies have been carried out on rabbits to ascertain the potential of the perichondrium in cartilaginous cellular regeneration. Some more recent studies seem to have demonstrated the development of new cartilage subsequent to vascularized perichondrial grafts. The perichondrium has been used solely for reconstructive purposes in nasal surgery, and there are descriptions of operations to repair defects of the lower third with perichondrial cutaneous grafts or to close perforations of the nasal septum. The perichondrium is also strengthened by it and better able to resist the forces of scar contraction working to displace them.

The only negative aspect registered with this technique is the greater extent of swelling in the postoperative period, which in any case, disappears in a few months and should thus cause no concern. It is, however, advisable to warn patients of this fact before the operation and explain that it is a small price to pay for a better definitive result.

CONCLUSIONS

The technique combining a perichondrium graft with a graft of auricular concha is easy to perform and involves no additional harvesting sites or scars. The operating time added for removing and preparing the material can be minimal if this takes place while another surgeon performs the retroauricular cutaneous suture.

The technique is particularly useful in revision rhinoplasties involving a number of cartilaginous grafts that can become visible over time in the presence of thin skin and lead to irregularity of the nasal contour. It is also indicated in cases that involve the suturing of sections of cartilaginous structures, which can be displaced in time through scar contraction and show sharp ridges beneath the cutaneous covering. A further possibility is insertion of the perichondrum between the 2 mucosal flaps in operations to repair perforations of the nasal septum.

In all these cases, the perichondrium graft is easy to shape in accordance with requirements and secure to the surrounding structures with sutures. Clinical experience has shown no adverse effects of infection, absorption, or rejection of the graft. The only negative aspect is swelling to a greater extent than usual, which can be particularly marked at the tip but disappears slowly over time in any case.

The perichondrium graft has proved useful in optimizing the long-term results of revision rhinoplasty by preventing impairment and blemishes of the nasal contour.

REFERENCES

4. Costantian MB, Clardy RB. The relative importance of septal and nasal

FIGURE 6. Patient subjected to 2 previous rhinoplasties with persistent deviation of the dorsal septum and underprojection and asymmetry of the nasal tip. Revision was performed by means of 2 spreader grafts, a right lateral crural graft, and an umbrella graft of the Peck type, all harvested from the auricular concha. A perichondrium graft was secured on top of the cartilaginous grafts of the nasal tip. A, C, and E, Preoperative views. B, D, and F, Postoperative views.
7. Sheen JH. Achieving more nasal tip projection by the use of a small autogenous vomer or septal cartilage graft. Plast Reconstr Surg 1975;56:15–20